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Abstract: The relative Coulombic repulsions (repulsivities) are calculated for possible polyhedra for coordination 
numbers four through nine, inclusive, assuming equal charges and bond distances for all metal-ligand bonds 
(EDEC model). Comparison with the coordination polyhedra found in actual complexes indicates that polyhedra 
with low repulsivity values are favored. In medium-symmetry coordination polyhedra one or two bond angles can 
be varied, keeping the same metal-ligand bond lengths and the same symmetry elements. In these cases the bond 
angles giving the minimum EDEC repulsivity are close to those found in actual complexes by X-ray crystallography 
except in cases where other factors such as TT bonding or special steric requirements of chelating ligands are clearly 
involved. 

The first paper of this series3 generated possible 
polyhedra for coordination numbers four through 

nine, inclusive, by considering maximum-symmetry 
polyhedra satisfying the relationships e + 2 = v + f 
(Euler's relationship), 2e > 3f, and 3v < 2e. The 
property of flexibility was next defined as the number of 
the 32 possible sp3d* combinations which can form the 
polyhedron in a fixed spatial orientation. It was shown 
that polyhedra with minimum flexibilities, maximum 
symmetries, and maximum numbers of faces are favored 
in actual complexes. 

This paper examines the total interligand repulsions 
of the coordination polyhedra generated in the first 
paper of this series3 in an attempt to develop a more 
quantitative basis for determining which coordination 
polyhedra are favored in various complexes. This 
work represents an extension and expansion of a 
treatment initiated by Gillespie4 and further developed 
by others66 for the particularly difficult case of seven 
coordination. 

Method 

Consider a complex as a central metal atom sur­
rounded by point charges corresponding to the centers 
of charge of the various metal-ligand bonds. These 
point charges are located at the vertices of the co­
ordination polyhedron. In order to make the cal­
culations as general as possible, assume that the 
distances of all point charges from the central metal 
atom are equal and that all of the charges have equal 
magnitudes; this idealized model may be called the 
equal-distances-equal-charges (EDEC) model. Assume 
further that the repulsion between the point charges 
corresponding to the ligands follows an inverse square 
law (Coulomb's law). The repulsion between ligands 
i and j , / i j , can thus be represented by 

/« = § ? (D 
where e{ and e^ are the point charges corresponding 

(1) For Part II of this series, see R. B. King, / . Amer. Chem. Soc, 91, 
7217(1969). 

(2) Fellow of the Alfred P. Sloan Foundation, 1967-1969. 
(3) R. B. King, / . Amer. Chem. Soc, 91, 7211 (1969). 
(4) R. J. Gillespie, Can. J. Chem., 38, 818 (1960). 
(5) D. Briton, ibid., 41, 1632 (1963). 
(6) T. A. Claxton and G. C. Benson, ibid., 44, 157 (1966). 

to the center of charge of the bonds of the central 
metal atom to ligands i and j , respectively, dy is the 
distance between the two point charges i and j , and k 
is a constant. However, the EDEC model requires 
that ex = e,- = e for all i and j , which means that a new 
constant w = ke2 can be defined. Using the constant 
w eq 1 becomes 

The locations of the point charges can be expressed 
by the coordinates r, rj, 4> corresponding to the Carte­
sian coordinates as follows 

x = r cos 7] cos <jy (3a) 

y = r cos r\ sin cf> (3b) 

z = r sin r\ (3c) 

The coordinates r and <j> are identical with these co­
ordinates in conventional spherical polar coordinates7 

and the new coordinate r\ is related to the d of spherical 
polar coordinates by the simple relationship -q = 6 — 
90°. Since rj and 0 correspond to the latitude and 
longitude of the earth represented by these coordinates, 
the coordinate system r, rj, 4> will be called the geodesic 
coordinate system. The angular geodesic coordinates 
t] and <j> for the coordination polyhedra examined in 
this study are listed in Table I. (Since the EDEC 
model requires r to be constant for all vertices, values 
for r are not given in Table I). 

The distance between the point charges i and j in 
Cartesian coordinates is 

<k = V(Xj - Xiy + (jj - yd2 + (zj - zd2 (4) 

Upon transformation into geodesic coordinates, eq 4 
can be separated into a radial term and an angular 
term. Since the EDEC model requires r to remain 
constant the following equation is obtained 

rfy = rVAn (5) 

In eq 5 the angular term Atj depends solely upon the 
angular geodesic coordinates t\ and 4>. Substituting eq 

(7) Y. R. Syrkin and M. E. Dyatkina, "Structure of Moleclues and the 
Chemical Bond," Interscience, New York, N. Y., 1950, p 12. 
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Table I. Angular Cjeodesic Coordinates for Coordination Polyhedra" 

Polyhedron'' 
• ~ i \ -

5 

Angular geodesic coordinates of vertices" -

6 7 8 9 1 2 3 

(A) Coordination number four 
Planar square (D4I1) 
Tetrahedron (T,i) 

(B) Coordination number five 
Square pyramid (C4v) 
Trigonal bipyramid (D3h) 

(C) Coordination number six 
Trigonal prism (D3I,) 
Irregular hexahedron (C2) 
Diagonally deficient cube (C2,.) 
Octahedron (Oh) 

(D) Coordinating number seven 
7.11.6 polyhedron ( C ) 
3-Capped trigonal prism (C3v) 
4-Capped trigonal prism (C21) 
7.14.9 polyhedron (Cs) 
Capped octahedron (C31) 
Pentagonal bipyramid (Dy,) 

(E) Coordination number eight 
Cube (O1,) 
8.13.7 polyhedron (C2v) 
8,14,8-polyhedron (D,,,) 
3,3-Bicapped trigonal prism (D3),) 
Square antiprism (Dw) 
4,4-Bicapped trigonal prism (C21.) 
Bicapped octahedron (Dw) 
"Dodecahedron" (D2,i) 

(F) Coordination number nine 
Doubled trigonal prism (D31,) 
Capped cube (C41-) 
9.17.10 polyhedron (C,,) 
3,4,3-Tricapped trigonal prism 

(C21.) 
4-Capped square antiprism (C41) 
4,4,4-Tricapped trigonal prism 

(C31,) 

0 
90 

90 
90 

90 
0 

0 
19 

0 
19 

/3 

Same as 7,11,6 polyhedron" 
90 0 0 
90 0 0 

45 
45 

45 
45 + « 

(X 

45 
45 
0 

90 
a 
0 

90 

90 
90 
90 

90 

0 
19 

/3 
0 

/3 
0 

45 
45 + 
0 

-90 

90 

0 
a 

-90 

P a 

a 

0 

45 
45 
0 

~ot 

— ot 

a 

~ct 

-H 

0 
a 

a 

0 

a 

0 

Ct 

0 

-45 
-45 

0 
— a 

— ot 

— « 
— ct 

-/3 

0 
/3 

a 
-90 

-45 
-45 
— ot 

— a 

— ct 

— ct 

— a 
— ct 

— a 
(3 

45 - (1 45 + p 
Ot 

/3 
0 

— a 

/3 
— a 

-45 
-45 

— a 

-90 
— ot 

— a 

-90 
— a. 

— a 

/3 
45 
— a 

/3 
— a 

- a 

H 
45 + 13 
90 

/3 
— a 

0 
0 

0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
60 
0 
0 

0 
0 
0 
0 

0 
0 

90 
0 

0 
0 

180 
120 

90 
120 

120 240 
/3 
90 
90 

90 
0 
60 

0 
0 

90 
90 
180 
0 
90 
300 
0 

180 

120 
0 
0 
60 

0 
120 

270 
240 

180 270 
240 

0 
/3 + 180 7 
180 
180 

180 
120 
180 

120 
72 

180 
180 
45 
120 
180 
0 

120 
90 

240 
90 
90 
180 

90 
240 

270 
270 

270 
240 
300 

240 
144 

270 
270 
135 
240 
270 
120 
240 
270 

0 
180 

0 

120 240 
7 + 180 180 
0 
0 

7 
0 
60 

60 
216 

0 
0 

225 
0 
45 
240 
60 
0 

120 
270 

180 270 
300 

180 
60 

0 

170 
180 

180 
0 

7 + 120 y + 24C 
120 
180 

180 
288 

90 
90 
315 
120 
135 
0 

180 
180 

240 
0 
0 
60 

45 
300 

240 
300 

300 
0 

180 
180 
0 

240 
225 
120 
300 
90 

0 
90 
90 
180 

135 
0 

I 

270 
270 
180 
0 

315 
240 
0 

270 

120 240 
180 270 
180 270 
300 0 

225 315 
120 240 

" See text for definitions of the geodesic coordinates. The geodesic coordinate r is always a constant. h The nomenclature of the polyhedra is similar to that used in R. B. King, / . Amer. Chem. Soc, 
91, 7211 (1969). 'The 7.11,6 and 7,14,9 polyhedra have geodesic coordinates differing only in the values of 7 relative to a and fi. 
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5 into eq 2 gives the following equation 

However, since the EDEC model requires r to be 
constant for all i and j , it is possible to define a new 
constant K such that K = w/r2. This gives the fol­
lowing equation 

The total interligand repulsion in a metal complex, F, 
is the sum of the individual repulsions / ; j over all 
possible interactions, i.e. 

F=t t A (8) 

where v is the number of vertices in the coordination 
polyhedron under consideration. Substituting eq 7 
into eq 8 and moving the constant K outside the sum­
mation signs gives 

F = K± t 7 - (9) 

The repulsivity, T, may then be defined according to 
the following equation: 

T = E E J (io) 
«=i j - i ' + M i j 

The total interligand repulsion is thus directly pro­
portional to the repulsivity, i.e., (11). Calculation of the 

F = KT (11) 

repulsivity for various coordination polyhedra will give 
a direct indication of the relative favorability of various 
coordination polyhedra with minimum-repulsivity poly­
hedra being most favored. 

In order to calculate the repulsivity for various co­
ordination polyhedra it is necessary to evaluate the 
angular terms A^. Substituting the definitions of the 
geodesic coordinates (eq 3) into eq 4 and removing 
the radial terms as in eq 5 gives the following 
relationship after expansion and simplification by 
utilizing twice the relationship sin2 x + cos2 x = 1 

^4jj = 2 — 2 COS T]j COS <j>j COS tji COS <f>i — 

2 cos rjj sin 0j cos rji sin 0; — 2 sin rjj sin r)i (12) 

This equation may also be expressed in the following 
form in order to minimize computer time by minimizing 
the use of the trigonometric functions 

^ij = 2 - [cos (rjj - Vi) + cos (T7J + 7?i)][cos (</>j + 

(J)1)] - [cos (T7J - Vi) - cos (vi + Vi)] 

The requirement of the EDEC model that all metal-
ligand distances are equal is equivalent to regarding 
the ligands as point charges on the surface of a sphere 
as done by previous workers.4-6 In the cases of 
polyhedra of highest symmetry (tetrahedron, planar 
square, trigonal bipyramid, octahedron, pentagonal 
bipyramid, and cube), this requirement combined 
with the symmetry restrictions unambiguously defines 
a unique position of all ligands. However, in the case 
of polyhedra of intermediate symmetry (square pyramid, 

trigonal prism, 4-capped trigonal prism, all eight-
coordinate polyhedra except the cube and D2d do­
decahedron, the doubled trigonal prism, and the 3,4,3-
and 4,4,4-tricapped trigonal prisms), even the com­
bination of symmetry requirements and the location 
on the surface of a sphere is insufficient to define a 
unique position of all ligands. Instead, the angular 
geodesic coordinates (Table I) of these polyhedra can 
be expressed as a function of a single variable designated 
as a. The repulsivity values for these polyhedra are 
defined as minimum repulsivities as a is varied through 
the total possible range (generally 0° < a < 90°). 
The complexity of the function relating repulsivity 
to a made it unfeasible to determine the minimum 
repulsivity by analytical methods such as setting an 
appropriate derivative equal to zero and solving the 
resulting equation. Instead, repulsivity values were 
calculated as a was varied in 1 ° increments throughout 
the range and the minimum value taken. The value 
of a giving the minimum EDEC repulsivity value is 
designated as \p. 

Some still less symmetrical polyhedra presented 
even more severe problems, since even after imposing 
the requirements of their point group and of location 
on a spherical surface their coordinates required a 
function of two (a, /3) or sometimes even three variables 
(a, (3, y). It was not feasible to calculate minimum 
repulsivity values by analytical minimization or by 
systematic variation of the two or more variables in 
sufficiently small increments; therefore, in most cases 
a relationship between the variables was assumed 
consistent with observed geometry and with a relatively 
large minimum interligand distance, thereby eliminating 
all of the variables except one in the geodesic coor­
dinates of the polyhedron under consideration. Only 
in the case of the particularly important D2d 8,18,12 
dodecahedron was the minimization carried out by 
alternate variation of both variables in 1° increments 
until a minimum repulsivity value was obtained; 
here the values of a and /3 leading to the minimum 
repulsivity are designated as ^1 and ^2, respectively. 

The calculations of repulsivity and \f/ values were 
carried out on the University of Georgia IBM 360/65 
computer. 

Discussion 

The repulsivity and \p calculations summarized in 
Table II relate to the following two categories of 
empirical observations. 

I. The Favored Coordination Polyhedron for a 
Given Coordination Number. If the EDEC model 
were strictly followed, the minimum-repulsivity poly­
hedron for a given coordination number would always 
be found. Deviations from the EDEC assumptions 
can change the repulsivities of different polyhedra for a 
given coordination number enough to change the mini­
mum repulsivity polyhedron for a given type of com­
plex. However, polyhedra with EDEC repulsivity 
values close to the minimum EDEC repulsivity value 
for a given coordination number are much more likely 
to become the minimum-repulsivity polyhedron by 
deviations from the EDEC assumptions than polyhedra 
with EDEC repulsivity values far above the minimum 
EDEC repulsivity value. Thus the ordering of EDEC 
repulsivity values gives an indication of the probability 
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Table II. EDEC Repulsivity and ip Values for Various Coordination Polyhedra 

Polyhedron0 

Coordination number four 
Planar square (D4h) 
Tetrahedron (Td) 

Coordination number five 
Square pyramid (C4v) 
Trigonal bipyramid (D3h) 

Coordination number six 
Trigonal prism (D3h) 
Irregular hexahedron (C8) 
Diagonally deficient cube (C2v) 
Octahedron (Oh) 

Coordination number seven 
7,11,6 polyhedron (C8) 
3-Capped trigonal prism (C3v) 
3-Capped trigonal prism (C3 v) 
4-Capped trigonal prism (C2») 
7,14,6 polyhedron (C,) 
Capped octahedron (C3v) 
Pentagonal bipyramid (D6h) 

Coordination number eight 
Cube (Oh) 
8,13,7 polyhedron (Cjv) 
8,14,8 polyhedron (D2h) 
3,3-Bicapped trigonal prism (D3h) 
Square antiprism (D4d) 
4,4-Bicapped trigonal prism (C2v) 
Bicapped octahedron (D3d) 
"Dodecahedron" (D2<i) 
"Dodecahedron" (D2d) 

Coordination number nine 
Doubled trigonal prism (D3h) 
Capped cube (C4v) 
9,17,10 polyhedron (C2,) 
9,18,11 polyhedron (C3 v) 
3,4,3-Tricapped trigonal prism (C2v) 
4-Capped square antiprism (C4v) 
4,4,4-Tricapped trigonal prism (D3h) 

T 

2.500 
2.250 

4.266 
4.250 

6.972 
7.185 
7.623 
6.750 

10.446 
10.793 
10.969 
10.785 
10.446 
10.276 
10.250 

15.667 
15.658 
14.783 
15.754 
14.337 
14.878 
14.501 
14.390 
14.354 

21.492 
20.181 
23.664 
20.560 
20.826 
19.780 
19.253 

\p, deg 

- 1 4 

39 
47 
35 

35 
46 
43 
41 
35 
38 

7 
58 
29 
34 
43 
19 
47 

1//1 = 51, h = 19° 

54 
31 
5 

51 
30 
28 
45 

/3 
/3 

/3 
/3 
a 

/3 
/3 

/3 

& 
a 

3 
/3 

Assumptions 

= 60°, 7 = 120° 
= — a 

= - a , 7 = 45° 
= - a / 2 
= 29°,/3 varied 

= —a, 7 = 0 
= -a/2 

= a/2 

= —a 
= 45°, 0 varied 
= —a 

= — a 

' The terminology used in this table is similar to that used in R. B. King, J. Amer. Chem. Soc, 91, 7211 (1969). 

of finding a particular polyhedron for a given co­
ordination number, with a lower repulsivity indicating 
a higher probability. 

II. The Relative Dimensions of Medium-Symmetry 
Coordination Polyhedra. If the EDEC model were 
strictly followed, the coordinates of the medium-sym­
metry polyhedra actually found in complexes would 
correspond to the \j/ values of the minimum-repulsivity 
polyhedra. Comparisons of corresponding angles 
found by X-ray crystallography in complexes with 
medium-symmetry coordination polyhedra with the 
calculated EDEC minimum-repulsivity \j/ values provide 
indications as to how closely actual systems are ap­
proximated by the EDEC model. 

With these general considerations in mind, the 
various coordination numbers can now be treated 
individually. A more detailed summary of the em­
pirical data is given in the first paper of this series.3 

(1) Coordination Number Four. The tetrahedron is 
the minimum-repulsivity polyhedron (T = 2.250) and 
is found in the majority of four-coordinate complexes. 
Deviations from the EDEC model can cause the higher 
EDEC repulsivity planar square (T = 2.500) to be the 
favored polyhedron in 16-electron four-coordinate 
complexes (d8 transition metal derivatives). 

(2) Coordination Number Five. The trigonal bi­
pyramid is the minimum-repulsivity polyhedron (T = 
4.250) and is found in the majority of five-coordinate 
complexes.8 The square pyramid (T = 4.266) has 

a repulsivity only slightly higher than that of the tri­
gonal bipyramid and is also found in a significant 
number of five-coordinate derivatives. 

Table III lists the a values for a variety of square-
pyramidal five-coordinate complexes. In general these 
complexes have widely different types of ligands as 
well as different metaHigand distances; they thus 
deviate considerably from EDEC conditions. As 
might be expected, a rather large range of a values is 
found for these complexes. The average a values 
found for all of the square-pyramidal complexes except 
the vanadyl /3-diketonates are somewhat less negative 
than the calculated ^ of —14° for the square pyramid. 
This discrepancy may arise from ir bonding between 
the metal atom and the four basal ligand atoms of the 
square pyramid, which places the metal atom closer to 
the plane of these four ligand atoms. 

(3) Coordination Number Six. The octahedron is 
the minimum-repulsivity six-coordinate polyhedron 
(T = 6.750) and is found in all six-coordinate deriv­
atives except for certain ethylenedithiolate complexes 
of the early and middle transition metals. These 
ethylenedithiolate complexes use the trigonal prism 
(T = 6.972)910 or, in one case, the 6,10,6 polyhedron 

(8) E. L. Muetterties and R. A. Schunn, Quart. Rec, Chem. Soc, 20, 
245 (1966). 

(9) R. Eisenberg and J. A. Ibers, J. Amer. Chem. Soc, 87, 3776 
(1965). 

(10) E. I. Stiefel and H. B. Gray, ibid., 87, 4012 (1965). 
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Table III. a Values for Some Square-Pyramidal Complexes* 
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Complex 

(C4Hi8P)3PdBr2 

Re2Cl8
2" 

Cu(salicyl-pn)(H20) 
(triars)NiBr2 

[Cu(S2CNPr2»)2]2 

Ni[ClCH3(O)CH=NC2H4NEtJ2 

[(C6H5)SP]3RuCl2 

(C6Ha)5Sb 
(CH3COCHCOCH3)2VO 
(C6H 6COCHCOCH3)2VO 

Oil 

- 2 
- 4 
+ 1 
- 2 
- 8 

- 1 5 
- 3 

- 1 1 
- 1 6 
- 1 7 

on 

- 1 
- 4 
- 9 
- 5 

- 1 3 
- 1 5 
- 1 1 
- 1 4 
- 1 6 
- 1 6 

as 

- 1 5 
- 4 

- 1 2 
- 3 
- 6 

- 1 0 
- 1 1 
- 1 9 
- 1 6 
- 1 4 

Ot1 

+ 6 
- 4 
- 3 

- 2 1 
- 1 2 

- 2 
- 2 0 

- 5 
- 1 6 
- 1 7 

Mean a1 

- 3 
- 4 
- 6 
- 8 

- 1 0 
- 1 0 
- 1 1 
- 1 2 
- 1 6 
- 1 6 

Ref 

a 
b 
C 

d 
e 
f 
g 
h 
i 
J 

<• J. W. Collier, F. G. Mann, D. G. Watson, and H. R. Watson, J. Chem. Soc., 1803 (1964). b F. A. Cotton and C. B. Harris, Inorg. Chem., 
4, 330 (1965). c F. J. Llewellyn and T. N. Waters, / . Chem. Soc., 2639 (1960). d G. A. Mair, H. M. Powell, and D. E. Henn, Proc. Chem. 
Soc, London, 415 (1960). ' A. Pignedoli and G. Peyronel, Gazz. Chim. Itai, 92, 745 (1962). ' L. Sacconi, P. L. Orioli, and M. Di Vaira, 
J. Amer. Chem. Soc, 87, 2059 (1965). « S. J. LaPlaca and J. A. Ibers, Inorg. Chem., 4, 778 (1965). h P. J. Wheatley, / . Chem. Soc, 3718 
(1964). • R. P. Dodge, D. H. Templeton, and A. Zalkin, / . Chem. Phys., 35, 55 (1961). > P. K. Hon, R. L. Belford, and C. E. Pfiuger, ibid., 
43,1323 (1965). * a values are given in degrees. ' For comparison, the calculated EDEC \p value for the square pyramid is —14°. 

(T = 7.185).11 The much higher repulsivity 6,11,7 
polyhedron (T = 7.623) has not yet been found in 
six-coordinate complexes. 

The observed9 a value of 40.7° for the trigonal 
prism in [(C6Hs)2C2S2]SRe is relatively close to the 
EDEC T value of 39° for this polyhedron. 

(4) Coordination Number Seven. The coordination 
number seven has been the most difficult to treat by this 
method, as was found to be the case with previous 
methods.3'66 In this work the difficulty arises from the 
relatively low symmetry of some of the seven-coordinate 
polyhedra, which leads to two or three independent 
variables among the angular geodesic coordinates. 
Thus for the 7,11,6 and 7,14,9 polyhedra the latitude 
of the four-ligand "belt" (a), the latitude of the three-
ligand "belt" 03), and the relative rotations of the 
ligands in the three- and four-ligand belts (7) are all 
independent variables. Since it was not feasible to 
vary two or three independent variables in sufficiently 
narrow steps over a sufficiently broad range, the mini­
mum repulsivities were found with arbitrarily imposed 
relationships (see Table II) which eliminated all in­
dependent variables but one, which then could be varied 
over a sufficiently broad range in sufficiently narrow 
steps to seek minima. Thus the minimum repulsivities 
for these polyhedra given in Table II may not be the 
ultimate minima, as all combinations of a, 8, and 7 
(where applicable) could not be systematically checked. 

The minimum-repulsivity seven-coordinate poly­
hedron is the pentagonal bipyramid (T = 10.250) which 
is found in many actual seven-coordinate complexes.12 

The next lowest repulsivity seven-coordinate polyhedron 
is the C3v capped octahedron (T = 10.276) which is 
found in a few seven-coordinate complexes (e.g., 
NbOF6

13-).12 The two tetragonal-base-trigonal-base 
polyhedra (7,14,9 and 7,11,6 polyhedra) have the 
next lowest repulsivities (T = 10.446); the 7,14,9 
polyhedron is found in the monoclinic forms of ZrO2 

and HfO2.13 Next on the repulsivity scale is the A-
capped trigonal prism (T = 10.785); a few complexes 
with this polyhedron are known.12 Among the basic 
seven-coordinate polyhedra the 3-capped trigonal prism 

(11) E. I. Stiefel, Z. Dori, and H. B. Gray, J. Amer. Chem. Soc, 89, 
3353 (1967). 

(12) E. L. Muetterties and C. M. Wright, Quart. Rev., Chem. Soc, 
21,109(1967). 

(13) J. D. McCullough and K. N. Trueblood, Acta Crystallogr., 12, 
507 (1959); D. K. Smith and H. W. Newkirk, ibid., 18, 983 (1965); 
J. Adam and M. D. Rogers, ibid., 12,951 (1959). 

(7,12,7 polyhedron) has the highest repulsivity (T = 
10.793); no complexes with this polyhedron are 
known.12 

(5) Coordination Number Eight. The two lowest 
repulsivity eight-coordinate polyhedra are the square 
antiprism (T = 14.337) and the D2a dodecahedron 
(T = 14.354). These two polyhedra are the ones 
almost always found in eight-coordinate complexes.12>14 

The next lowest repulsivity eight-coordinate polyhedra 
are the D3d bicapped octahedron (T = 14.501) and the 
D2h 8,14,8 polyhedron (T = 14.783), but these poly­
hedra cannot be formed by hybrids using only s, p, and 
d orbitals (zero permutivities).3 Next on the repulsivity 
scale is the 4,4-bicapped trigonal prism (T = 14.878); 
this polyhedron is found in some lanthanide trihalides.15 

The calculated EDEC \j/ for the square antiprism is 
34°. This compares favorably with observed a values 
such as 32.7° for zirconium tetrakis(acetylacetonate)16 

and 34.4° for barium hydroxide octahydrate.17 Simi­
larly, Table IV compares the calculated EDEC \pi and 

Table IV. a and /3 Values for Some D2<i Dodecahedral Complexes" 

Complex 

(diars)2TiCl4 

Na4Zr(C2O4)^H2O 
K4Mo(CN)8 

ThCl4 

Minimum-repulsivity 
D2(i dodecahedron 

a 

54 
55 
54 
54 
51 

0 

17 
17 
18 
15 
19 

" These a and 0 values were calculated from data presented in 
Table 3 of E. L. Muetterties and C. M. Wright, Quart. Ree., Chem. 
Soc, 21, 143 (1967). Complexes of bidentate ligands with ab­
normally small "bites" (e.g., O 2

2 - and NO3
-) were omitted from 

consideration. 

\p2 values of 51 and 19° of the D2d dodecahedron with 
the corresponding angles found in eight-coordinate 
complexes of this geometry; again, agreement is rela­
tively good. In addition, the calculated EDEC ty for the 
4,4-bicapped trigonal prism is 43°, which is relatively 
close to the observed a value of 44.8° for terbium tri­
chloride, which utilizes this coordination polyhedron.1S 

(14) S. J. Lippard, Progr. Inorg. Chem., 8, 109 (1967). 
(15) J. D. Forrester, A. Zalkin, D. H. Templeton, and J. C. Wall-

man, Inorg. Chem., 3, 185 (1964). 
(16) J. V. Silverton and J. L. Hoard, ibid., 2, 243 (1963). 
(17) H. Manohar and S. Ramaseshan, Z. Kristallogr., Kristallgeo-

metrie, Kristallphys., Kristallchem., 119, 357 (1964). 
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(6) Coordination Number Nine. The only nine-co­
ordinate polyhedron found in molecular complexes is 
the 4,4,4-tricapped trigonal prism (T = 19.253), which 
is also the minimum-EDEC-repulsivity polyhedron. 
The a values of 45.8 and 47.8° for the two crystallo-
graphically independent ReH9

2 - ions in the unit cell of 
K2ReH9

18 are relatively close to the calculated \p value 
of 45° for this polyhedron. 

(18) K. Knox and A. P. Ginsberg, Inorg. Chem., 3, 555 (1964); 
S. C. Abrahams, A. P. Ginsberg, and K. Knox, Ibid., 3, 559 (1964). 

The first paper of this series3 generated possible 
polyhedra for coordination numbers four through 

nine, inclusive, by considering maximum-symmetry 
polyhedra with numbers of vertices (v), edges (e), and 
faces ( /) satisfying the relationships e + 2 = v + / 
(Euler's relationship), 2e > 3/, and 3v < 2e. Next the 
number of sp3dn hybrids which can form each poly­
hedron was considered in order to predict the relative 
tendencies for various polyhedra to be found in actual 
complexes. In an earlier paper of this series1 the 
relative Coulombic repulsion energies were examined 
using a model with equal metal-ligand distances and 
equal ligand charges (EDEC model). 

The purpose of this paper is the examination of pos­
sible polyhedra for coordination numbers 10-16. 
Some of these coordination numbers sometimes occur 
in lanthanide and actinide chemistry4 and necessarily 
involve sp3d5f" hybrids. 

Generation of Possible Polyhedra 

The first step in the generation of possible poly­
hedra for coordination numbers 10-16 is the listing of 
all possible triads of v, e, and / values5 satisfying the 
following relationships. 

(1) Euler's relationship :6 e + 2 = v + f. 

(1) For Part III of this series, see R. B. King, J. Amer. Chem. Soc, 
92, 6455 (1970). 

(2) Fellow of the Alfred P. Sloan Foundation, 1967-1969. 
(3) R. B. King, J. Amer. Chem. Soc, 91, 7211 (1969). 
(4) E. L. Muetterties and C. M. Wright, Quart. Rev., Chem. Soc., 21, 

109 (1967). 
(5) The terminology and symbols in this paper are the same as those 

used in the first paper of this series (ref 3). 
(6) B. Griinbaum, "Convex Polytopes," Interscience, New York, 

N. Y., 1967, pp 130-138. 

Acknowledgments. I am indebted to the University 
of Georgia Office of General Research for providing 
time on the University of Georgia IBM 360/65 com­
puter and to the Sloan Foundation for the partial 
support of other expenses of this research. I am also 
indebted to Professor Darwin W. Smith of the Uni­
versity of Georgia for helpful discussions. This work 
was initiated during the tenure of a Visiting Lectureship 
at the University College of Townsville, Pimlico (Towns-
ville), Queensland, Australia. 

(2) Lower limit of e and / for a given v: e < If. 
This relationship arises from the previously used3 

limitation of coordination polyhedra to those with 
triangular and quadrilateral faces and is more restrictive 
than the previously used relationship 3v < 2e, which 
arises from the fact that in three-dimensional polyhedra 
each vertex must have an order of at least three. 
Combination with Euler's relationship gives the in­
equalities 2v — 4 > f > D — 2 and 3D — 6 > e > 2v — 
4, which are more restrictive than the previously used3 

2v - 4 > / > v/2 + 2 and 3v - 6 > e > 3vj2. Inci­
dentally, it appears that even this more restrictive 
relationship e < 2/is not sufficient to exclude all poly­
hedra with faces with five or more sides (pentagonal, 
hexagonal, etc.) or divalent vertices, since it appears 
impossible to form the 9,14,7 polyhedron without at 
least one pentagonal face or divalent vertex. 

(3) Upper limit of e and / for a given v: 2e > 3f. 
This relationship is the same as that used in the earlier 
paper3 and is based on the fact that each face must have 
at least three sides. It may be reasonable to introduce 
a limitation of a maximum order of five for a vertex. 
This would then define the upper limit more restrictively 
by the relationship 2e < 5v and would exclude all 
triangulated polyhedra3 for coordination numbers 13 
and greater. 

Using these relationships, triads of possible v, e, and 
/ values with 10 < v < 16 can be generated relatively 
easily. However, in many cases it is difficult to find 
actual polyhedra corresponding to a given triad of v, e, 
and / values. In order to facilitate greatly the search 
for actual polyhedra the "parallel plane" method was 
used. 
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Abstract: A given polyhedron may be considered as a stack of parallel planes containing all of its vertices. Pos­
sible polyhedra of at least C2v- symmetry for coordination numbers up to 16 are generated by considering all possible 
combinations of parallel planes containing different numbers of vertices. An f-flexibility value for each possible 
polyhedron for coordination numbers 10-16, inclusive, is derived by considering the number of different sp3d5P 
hybrids which can form this polyhedron. Calculation of the relative Coulombic repulsions (repulsivities) for the 
more symmetrical polyhedra of coordination numbers 10 and 12 indicate the 4,4-bicapped square antiprism and 
regular icosahedron to be the minimum-repulsivity polyhedra for these coordination numbers. 
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